-4 B

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D. —/ —

Courtesy: Most slides are adopted from CSE-57Z3 (Washington U.)Yoriginal
slides for the textbook, and CS-188 (UC. Berkeley).
"/ |

N’ .

Local Search

-~
e/ lterative improvement algorithms

~—

S—

* Previously: Search to find best path to goal

* Systematic exploration of search space.

* Today: a state is solution to problem
* For some problems path is irrelevant.

* e.g., 8-queens

* In such cases, can use iterative improvement algorithms;

* keep a single ‘“current” state, try to improve it

* n-queens

Examples
o- o ®
N //
\\ //
Y, :!;
///
/
/
/7
® ®
0 1 2 3 4 5
o w
> -
S
" “
o | W
- .

Local search algorithms

State space = set of "complete” configurations

Find configuration satisfying constraints,

* e.g., all n-queens on board, no attacks
In such cases, we can use local search algorithms
Keep a single "current” state, try to improve it.

Very memory efficient

* duh - only remember current state

\/ Constraint Satisfaction vs. Constraint Optimization

=

: : Optimization
Satisfaction P
Constraint satisfaction Constraint Optimization
reach the goal node optimize(objective fn)

guided by heuristic fn

You can go back and forth between the two problems. Typically in the same

< O e

. 6
complexity class
—

~ Local Search and Optimizati
/ ocdal dedrch an ptimization

* Local search:
* Keep track of single current state
* Move only to “neighboring” state (defined by operators)

* |gnore previous states, path taken

* Advantages:
* Use very little memory

* Can often find reasonable solutions in large or infinite (continuous) state spaces.

* “Pure optimization” problems
* All states have an objective function
* Goal is to find state with max (or min) objective value
* Does not quite fit into path-cost/goal-state formulation

* Local search can do quite well on these problems.

\/\./

_/ Trivial Algorithms

o N/

N’

* Random Sampling

* Generate a state randomly

* Random Walk

* Randomly pick a neighbor of the current state

* Why even mention these?

* Both algorithms are asymptotically complete.

* If the state space is finite, each state is visited at a fixed rate asymptotically. -/

A T e)

- Hill-climbing search

~—

ol

“a loop that continuously moves towards increasing value”
* terminates when a peak is reached

* Aka greedy local search

Value can be either
* Obijective function value

* Heuristic function value (minimized)

Hill climbing does not look ahead of the immediate neighbors

* Can randomly choose among the set of best successors

* if multiple have the best value

“climbing Mount Everest in a thick fog with amnesia”

~ N4

S

\/ Example: n-Queens

—

_, * State

* All n queens on the board in some configuration

e But each in a different column

e Successor function

* Move single queen to another square in same column.

* How to convert this into an optimization problem?

S
_/ ~ Hill-climbing search: 8-queens

o

Nt

* Result of hill-climbing in this case...

A local minimum with h = 1

S

Hill-climbing performance on n-queens

* Hill-climbing can solve large instances of n-queens (n = 106) in a few

(ms)seconds

* 8 queens statistics:

* State space of size =17 million

Starting from random state, steepest-ascent hill climbing solves 14% of problem

instances

It takes 4 steps on average when it succeeds, 3 when it gets stuck

When “sideways” moves are allowed, performance improves ...

When multiple restarts are allowed, performance improves even more

\/ - et

— Hill Climbing Drawbacks

g

~ These are all local maxima

Local maxima

Objecti‘ e function Iobal maximum

shoulder

Plateaus local maximur Diagonal

"flat" local maximum

ridges

current »state space

state At ’

@ Trajectories, difficulties

-]
e ¢

\
:\\‘\ e "
\ DA

e/ Escaping Shoulders: Sideways Move

~—

* [£nho downhill (uphill) moves, allow sideways moves in

hope that algorithm can escape

* Must limit the number of possible sideways moves to

lobal maximum

objecti\{e function
/

avoid infinite loops

* For 8-queens shoulder
local maximum
"flat" local maximum

* Allow sideways moves with limit of 100

* Raises percentage of problems solved from 14 to 94%

* However.... Ren »state space
state
* 21 steps for every successful solution —
* 64 for each failure
15 e

N g\).

—— Hill Climbing Properties

S~

~—r

* Not complete. Why?
* Terrible worst case running time.

* Simple, O(1) space, and often very fast.

- Tabu Search

o N’
5 Prevent returning quickly to the same state
* Keep fixed length queue (“tabu list”)
* Add most recent state to queue; drop oldest
* Never move to a tabu state
* Properties:
* As the size of the tabu list grows, hill-climbing will asymptotically become “non-
redundant” (won’t look at the same state twice)
* In practice, a reasonable sized tabu list (say 100 or so) improves the performance of hill
climbing in many problems o \/

© NS (U -)

= —

s/ Hill Climbing: Stochastic Variations

~—

* When the state-space landscape has local minima, any search that moves only in

the greedy direction cannot be complete
* Random walk, on the other hand, is asymptotically complete
* Idea: Combine random walk & greedy hill-climbing

* At each step do one of the following:

* Greedy: With prob. p move to the neighbor with largest value

* Random: With prob. 1-p move to a random neighbor

| \ —
\/ \/\/ Hill-climbing with random restarts

If at first you
don’t succeed,

*“If at first you don’t succeed, try, try again!
o

) L try, try again!
e Different variations

* For each restart: run until termination vs. run for a fixed time

* Run a fixed number of restarts or run indefinitely

* Analysis
* Say each search has probability p of success

* e.g., for 8-queens, p = 0.14 with no sideways moves
* Expected number of restarts?

* Expected number of steps taken?

5 NS

-/
/ Hill-Climbing with Both Random Walk & Random

Sampling

* At each step do one of the three
* Greedy: move to the neighbor with largest value
* Random Walk: move to a random neighbor

* Random Restart: Start over from a new, random state

o/

Simulated Annealing
* |dea: escape local maxima by allowing some “bad” moves

~ ¢ but gradually decrease their size and frequency

* method proposed in 1983 by IBM researchers for solving VLSI layout problems

* A Physical Analogy:
* Imagine letting a ball roll downhill on the function surface

* Now shake the surface, while the ball rolls,

* Gradually reducing the amount of shaking

S

Simulated Annealing (cont.)

* Annealing = physical process of cooling a liquid = frozen

simulated annealing:

* free variables are like particles

* seek “low energy” (high quality) configuration

* slowly reducing temp. T with particles moving around randomly

high T: probability of “locally bad” move is higher

low T: probability of “locally bad” move is lower

typically, T is decreased as the algorithm runs longer

* i.e., there is a “temperature schedule”

N’

Nt

N7/

| &7
\/ ® Simulated Annealing (cont.)

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current «+— MAKE-NODE(INITIAL-STATE[problem])
for t< 1 to oo do
T «— schedule[t]
if T'= 0 then return current
nexrt<— a randomly selected successor of current
AFE « VALUE[next]| — VALUE[current]
if AE > 0 then current < next

else current < next only with probability e® £/

23

Acceptation probability

0.8

0.6

0.4

0.2

Effect of temperature

Simulated Annealing in practice

* Other applications:

* Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout,

Image Processing, ...

* Optimal, given that T is decreased sufficiently slow.

* Is this a useful guarantee?

* Convergence can be guaranteed if at each step, T drops no more quickly than

C/log n, C=constant, n = # of steps so far.

-
Local beam search

* |dea: Keeping only one node in memory is an extreme reaction to memory

~

problems.

* Keep track of k states instead of one
* Initially: k randomly selected states
* Next: determine all successors of k states
* If any of successors is goal = finished

* Else select k best from successors and repeat

Local Beam Search

* Not the same as k random-start searches run in parallel!

* Searches that find good states recruit other searches to join them
* Problem: quite often, all k states end up on same local hill

* |dea: Stochastic beam search

* Choose k successors randomly, biased towards good ones

* Observe the close analogy to natural selection!

Genetic algorithms

~—

—* Local beam search, but...

* A successor state is generated by combining two parent states
* Start with k randomly generated states (population)

* A state is represented as a sfring over a finite alphabet (often a string of Os and
1s)

* Evaluation function (fitness function). Higher = better

* Produce the next generation of states by selection, crossover, and mutation

¢

24748552

n-queens example

24 31%

32748552

A

32752411

327!52411

3274¢1B2

23 29%

24748552

24752411

24415124

24752411

/

20 26%

32752411

32752124

32543213

3722124

/

11 14%

la)
Initial Populatio

fitness:

#non-attacking queens

probability of being

regenerated

in next generation

24415124

24415411

|
Fithess Function

Ic
Selection

\ﬂ\

(d)
Cross—0Ovet

24415417

el
Mutation

[
I.II
.
W
|
W

| & N
_/ < n-queens example (cont.)

Has the effect of “jumping” to a completely different new part of the |
search space (quite non-local) @

30 \/

Comments on Genetic Algorithms

* Genetic algorithm is a variant of “stochastic beam search” ~~

¢ Positive points
* Random exploration can find solutions that local search can’t
* (via crossover primarily)
* Appealing connection to human evolution

* “neural” networks, and “genetic” algorithms are metaphors!
* Negative points
* Large number of “tunable” parameters
* Difficult to replicate performance from one problem to another
* Lack of good empirical studies comparing to simpler methods
* Useful on some (small?) set of problems but no convincing evidence that GAs are better " \/

N~ (U st 4

than hill-climbing w/random restarts in general

