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Local Search
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Iterative improvement algorithms 

• Previously: Search to find best path to goal 

• Systematic exploration of search space. 

• Today: a state is solution to problem
• For some problems path is irrelevant.

• e.g., 8-queens 

• In such cases, can use iterative improvement algorithms; 

• keep a single “current” state, try to improve it 
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Examples

• TSP

• n-queens 
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Local search algorithms 

• State space = set of "complete" configurations

• Find configuration satisfying constraints, 

• e.g., all n-queens on board, no attacks

• In such cases, we can use local search algorithms

• Keep a single "current" state, try to improve it. 

• Very memory efficient
• duh - only remember current state 
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Constraint Satisfaction vs. Constraint Optimization

You can go back and forth between the two problems. Typically in the same 
complexity class 
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Local Search and Optimization 

• Local search:
• Keep track of single current state 

• Move only to “neighboring” state (defined by operators)

• Ignore previous states, path taken 

• Advantages: 
• Use very little memory 

• Can often find reasonable solutions in large or infinite (continuous) state spaces. 

• “Pure optimization” problems
• All states have an objective function

• Goal is to find state with max (or min) objective value

• Does not quite fit into path-cost/goal-state formulation

• Local search can do quite well on these problems. 
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Trivial Algorithms 

• Random Sampling

• Generate a state randomly 

• Random Walk
• Randomly pick a neighbor of the current state 

• Why even mention these?

• Both algorithms are asymptotically complete. 

• If the state space is finite, each state is visited at a fixed rate asymptotically. 
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Hill-climbing search 

• “a loop that continuously moves towards increasing value”
• terminates when a peak is reached

• Aka greedy local search 

• Value can be either
• Objective function value

• Heuristic function value (minimized) 

• Hill climbing does not look ahead of the immediate neighbors

• Can randomly choose among the set of best successors 
• if multiple have the best value 

• “climbing Mount Everest in a thick fog with amnesia” 
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Example: n-Queens

• State

• All n queens on the board in some configuration

• But each in a different column 

• Successor function

• Move single queen to another square in same column. 

• How to convert this into an optimization problem?
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Hill-climbing search: 8-queens 

• Result of hill-climbing in this case... 

A local minimum with h = 1 
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Hill-climbing performance on n-queens 

• Hill-climbing can solve large instances of n-queens (n = 106) in a few 
(ms)seconds 

• 8 queens statistics: 

• State space of size ≈17 million 

• Starting from random state, steepest-ascent hill climbing solves 14% of problem 
instances 

• It takes 4 steps on average when it succeeds, 3 when it gets stuck

• When “sideways” moves are allowed, performance improves ...

• When multiple restarts are allowed, performance improves even more 
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Hill Climbing Drawbacks 

Local maxima

Plateaus                                                        Diagonal 

ridges 
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Trajectories, difficulties 
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Escaping Shoulders: Sideways Move 

• If no downhill (uphill) moves, allow sideways moves in 
hope that algorithm can escape 

• Must limit the number of possible sideways moves to 
avoid infinite loops 

• For 8-queens

• Allow sideways moves with limit of 100

• Raises percentage of problems solved from 14 to 94% 

• However....

• 21 steps for every successful solution

• 64 for each failure 
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Hill Climbing Properties 

• Not complete. Why?

• Terrible worst case running time.

• Simple, O(1) space, and often very fast. 
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Tabu Search 

• Prevent returning quickly to the same state

• Keep fixed length queue (“tabu list”)

• Add most recent state to queue; drop oldest

• Never move to a tabu state 

• Properties: 

• As the size of the tabu list grows, hill-climbing will asymptotically become “non-
redundant” (won’t look at the same state twice) 

• In practice, a reasonable sized tabu list (say 100 or so) improves the performance of hill 
climbing in many problems 
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Hill Climbing: Stochastic Variations 

• When the state-space landscape has local minima, any search that moves only in 
the greedy direction cannot be complete 

• Random walk, on the other hand, is asymptotically complete 

• Idea: Combine random walk & greedy hill-climbing 

• At each step do one of the following: 

• Greedy: With prob. p move to the neighbor with largest value

• Random: With prob. 1-p move to a random neighbor 
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Hill-climbing with random restarts 

• If at first you don’t succeed, try, try again! 

• Different variations

• For each restart: run until termination vs. run for a fixed time

• Run a fixed number of restarts or run indefinitely 

• Analysis

• Say each search has probability p of success 

• e.g., for 8-queens, p = 0.14 with no sideways moves

• Expected number of restarts? 

• Expected number of steps taken?
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Hill-Climbing with Both Random Walk & Random 
Sampling 

• At each step do one of the three

• Greedy: move to the neighbor with largest value 

• Random Walk: move to a random neighbor

• Random Restart: Start over from a new, random state 
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Simulated Annealing 
• Idea: escape local maxima by allowing some “bad” moves 

• but gradually decrease their size and frequency 

• method proposed in 1983 by IBM researchers for solving VLSI layout problems 

• A Physical Analogy:

• Imagine letting a ball roll downhill on the function surface

• Now shake the surface, while the ball rolls,

• Gradually reducing the amount of shaking
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Simulated Annealing (cont.)

• Annealing = physical process of cooling a liquid à frozen 

• simulated annealing:

• free variables are like particles 

• seek “low energy” (high quality) configuration

• slowly reducing temp. T with particles moving around randomly 

• high T: probability of “locally bad” move is higher

• low T: probability of “locally bad” move is lower

• typically, T is decreased as the algorithm runs longer

• i.e., there is a “temperature schedule” 
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Simulated Annealing (cont.)
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Effect of temperature 
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Simulated Annealing in practice

• Other applications: 

• Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout, 
Image Processing, ...

• Optimal, given that T is decreased sufficiently slow. 

• Is this a useful guarantee?

• Convergence can be guaranteed if at each step, T drops no more quickly than 
C/log n, C=constant, n = # of steps so far. 
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Local beam search 

• Idea: Keeping only one node in memory is an extreme reaction to memory 
problems. 

• Keep track of k states instead of one

• Initially: k randomly selected states

• Next: determine all successors of k states

• If any of successors is goal à finished 

• Else select k best from successors and repeat 
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Local Beam Search 

• Not the same as k random-start searches run in parallel! 

• Searches that find good states recruit other searches to join them 

• Problem: quite often, all k states end up on same local hill 

• Idea: Stochastic beam search
• Choose k successors randomly, biased towards good ones 

• Observe the close analogy to natural selection! 
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Genetic algorithms 

• Local beam search, but...

• A successor state is generated by combining two parent states 

• Start with k randomly generated states (population) 

• A state is represented as a string over a finite alphabet (often a string of 0s and 
1s) 

• Evaluation function (fitness function). Higher = better 

• Produce the next generation of states by selection, crossover, and mutation
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n-queens example

29



n-queens example (cont.)
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Has the effect of “jumping” to a completely different new part of the 
search space (quite non-local) 



Comments on Genetic Algorithms 
• Genetic algorithm is a variant of “stochastic beam search”

• Positive points 

• Random exploration can find solutions that local search can’t

• (via crossover primarily) 

• Appealing connection to human evolution

• “neural” networks, and “genetic” algorithms are metaphors! 

• Negative points 

• Large number of “tunable” parameters

• Difficult to replicate performance from one problem to another 

• Lack of good empirical studies comparing to simpler methods 

• Useful on some (small?) set of problems but no convincing evidence that GAs are better 
than hill-climbing w/random restarts in general 
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