
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original
slides for the textbook, and CS-188 (UC. Berkeley).

1

Local Search

2

Iterative improvement algorithms

• Previously: Search to find best path to goal

• Systematic exploration of search space.

• Today: a state is solution to problem
• For some problems path is irrelevant.

• e.g., 8-queens

• In such cases, can use iterative improvement algorithms;

• keep a single “current” state, try to improve it

3

Examples

• TSP

• n-queens

4

Local search algorithms

• State space = set of "complete" configurations

• Find configuration satisfying constraints,

• e.g., all n-queens on board, no attacks

• In such cases, we can use local search algorithms

• Keep a single "current" state, try to improve it.

• Very memory efficient
• duh - only remember current state

5

Constraint Satisfaction vs. Constraint Optimization

You can go back and forth between the two problems. Typically in the same
complexity class

6

Local Search and Optimization

• Local search:
• Keep track of single current state

• Move only to “neighboring” state (defined by operators)

• Ignore previous states, path taken

• Advantages:
• Use very little memory

• Can often find reasonable solutions in large or infinite (continuous) state spaces.

• “Pure optimization” problems
• All states have an objective function

• Goal is to find state with max (or min) objective value

• Does not quite fit into path-cost/goal-state formulation

• Local search can do quite well on these problems.
7

Trivial Algorithms

• Random Sampling

• Generate a state randomly

• Random Walk
• Randomly pick a neighbor of the current state

• Why even mention these?

• Both algorithms are asymptotically complete.

• If the state space is finite, each state is visited at a fixed rate asymptotically.

8

Hill-climbing search

• “a loop that continuously moves towards increasing value”
• terminates when a peak is reached

• Aka greedy local search

• Value can be either
• Objective function value

• Heuristic function value (minimized)

• Hill climbing does not look ahead of the immediate neighbors

• Can randomly choose among the set of best successors
• if multiple have the best value

• “climbing Mount Everest in a thick fog with amnesia”
9

Example: n-Queens

• State

• All n queens on the board in some configuration

• But each in a different column

• Successor function

• Move single queen to another square in same column.

• How to convert this into an optimization problem?

10

Hill-climbing search: 8-queens

• Result of hill-climbing in this case...

A local minimum with h = 1

11

Bu
mm
er

Hill-climbing performance on n-queens

• Hill-climbing can solve large instances of n-queens (n = 106) in a few
(ms)seconds

• 8 queens statistics:

• State space of size ≈17 million

• Starting from random state, steepest-ascent hill climbing solves 14% of problem
instances

• It takes 4 steps on average when it succeeds, 3 when it gets stuck

• When “sideways” moves are allowed, performance improves ...

• When multiple restarts are allowed, performance improves even more

12

Hill Climbing Drawbacks

Local maxima

Plateaus Diagonal

ridges

13

Trajectories, difficulties

14

Escaping Shoulders: Sideways Move

• If no downhill (uphill) moves, allow sideways moves in
hope that algorithm can escape

• Must limit the number of possible sideways moves to
avoid infinite loops

• For 8-queens

• Allow sideways moves with limit of 100

• Raises percentage of problems solved from 14 to 94%

• However....

• 21 steps for every successful solution

• 64 for each failure
15

Hill Climbing Properties

• Not complete. Why?

• Terrible worst case running time.

• Simple, O(1) space, and often very fast.

16

Tabu Search

• Prevent returning quickly to the same state

• Keep fixed length queue (“tabu list”)

• Add most recent state to queue; drop oldest

• Never move to a tabu state

• Properties:

• As the size of the tabu list grows, hill-climbing will asymptotically become “non-
redundant” (won’t look at the same state twice)

• In practice, a reasonable sized tabu list (say 100 or so) improves the performance of hill
climbing in many problems

17

Hill Climbing: Stochastic Variations

• When the state-space landscape has local minima, any search that moves only in
the greedy direction cannot be complete

• Random walk, on the other hand, is asymptotically complete

• Idea: Combine random walk & greedy hill-climbing

• At each step do one of the following:

• Greedy: With prob. p move to the neighbor with largest value

• Random: With prob. 1-p move to a random neighbor

18

Hill-climbing with random restarts

• If at first you don’t succeed, try, try again!

• Different variations

• For each restart: run until termination vs. run for a fixed time

• Run a fixed number of restarts or run indefinitely

• Analysis

• Say each search has probability p of success

• e.g., for 8-queens, p = 0.14 with no sideways moves

• Expected number of restarts?

• Expected number of steps taken?

19

Hill-Climbing with Both Random Walk & Random
Sampling

• At each step do one of the three

• Greedy: move to the neighbor with largest value

• Random Walk: move to a random neighbor

• Random Restart: Start over from a new, random state

20

Simulated Annealing
• Idea: escape local maxima by allowing some “bad” moves

• but gradually decrease their size and frequency

• method proposed in 1983 by IBM researchers for solving VLSI layout problems

• A Physical Analogy:

• Imagine letting a ball roll downhill on the function surface

• Now shake the surface, while the ball rolls,

• Gradually reducing the amount of shaking

21

Simulated Annealing (cont.)

• Annealing = physical process of cooling a liquid à frozen

• simulated annealing:

• free variables are like particles

• seek “low energy” (high quality) configuration

• slowly reducing temp. T with particles moving around randomly

• high T: probability of “locally bad” move is higher

• low T: probability of “locally bad” move is lower

• typically, T is decreased as the algorithm runs longer

• i.e., there is a “temperature schedule”
22

Simulated Annealing (cont.)

23

Effect of temperature

24

-

Simulated Annealing in practice

• Other applications:

• Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout,
Image Processing, ...

• Optimal, given that T is decreased sufficiently slow.

• Is this a useful guarantee?

• Convergence can be guaranteed if at each step, T drops no more quickly than
C/log n, C=constant, n = # of steps so far.

25

Local beam search

• Idea: Keeping only one node in memory is an extreme reaction to memory
problems.

• Keep track of k states instead of one

• Initially: k randomly selected states

• Next: determine all successors of k states

• If any of successors is goal à finished

• Else select k best from successors and repeat

26

Local Beam Search

• Not the same as k random-start searches run in parallel!

• Searches that find good states recruit other searches to join them

• Problem: quite often, all k states end up on same local hill

• Idea: Stochastic beam search
• Choose k successors randomly, biased towards good ones

• Observe the close analogy to natural selection!

27

Genetic algorithms

• Local beam search, but...

• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a string of 0s and
1s)

• Evaluation function (fitness function). Higher = better

• Produce the next generation of states by selection, crossover, and mutation

28

n-queens example

29

n-queens example (cont.)

30

Has the effect of “jumping” to a completely different new part of the
search space (quite non-local)

Comments on Genetic Algorithms
• Genetic algorithm is a variant of “stochastic beam search”

• Positive points

• Random exploration can find solutions that local search can’t

• (via crossover primarily)

• Appealing connection to human evolution

• “neural” networks, and “genetic” algorithms are metaphors!

• Negative points

• Large number of “tunable” parameters

• Difficult to replicate performance from one problem to another

• Lack of good empirical studies comparing to simpler methods

• Useful on some (small?) set of problems but no convincing evidence that GAs are better
than hill-climbing w/random restarts in general

31

